Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties.

نویسندگان

  • Sabrina M Schiemann
  • José M Martín-Durán
  • Aina Børve
  • Bruno C Vellutini
  • Yale J Passamaneck
  • Andreas Hejnol
چکیده

Temporal collinearity is often considered the main force preserving Hox gene clusters in animal genomes. Studies that combine genomic and gene expression data are scarce, however, particularly in invertebrates like the Lophotrochozoa. As a result, the temporal collinearity hypothesis is currently built on poorly supported foundations. Here we characterize the complement, cluster, and expression of Hox genes in two brachiopod species, Terebratalia transversa and Novocrania anomalaT. transversa has a split cluster with 10 genes (lab, pb, Hox3, Dfd, Scr, Lox5, Antp, Lox4, Post2, and Post1), whereas N. anomala has 9 genes (apparently missing Post1). Our in situ hybridization, real-time quantitative PCR, and stage-specific transcriptomic analyses show that brachiopod Hox genes are neither strictly temporally nor spatially collinear; only pb (in T. transversa), Hox3 (in both brachiopods), and Dfd (in both brachiopods) show staggered mesodermal expression. Thus, our findings support the idea that temporal collinearity might contribute to keeping Hox genes clustered. Remarkably, expression of the Hox genes in both brachiopod species demonstrates cooption of Hox genes in the chaetae and shell fields, two major lophotrochozoan morphological novelties. The shared and specific expression of Hox genes, together with Arx, Zic, and Notch pathway components in chaetae and shell fields in brachiopods, mollusks, and annelids provide molecular evidence supporting the conservation of the molecular basis for these lophotrochozoan hallmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brachiopods possess a split Hox cluster with signs of spatial, but not temporal collinearity

CC-BY-NC-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was. Abstract Hox genes are often clustered in animal genomes and exhibit spatial and/or temporal collinearity. It is generally believed that temporal collinearity is the major force preserving Hox clusters. However, studies combining genomic ...

متن کامل

Genomic Organization and Expression Demonstrate Spatial and Temporal Hox Gene Colinearity in the Lophotrochozoan Capitella sp. I

Hox genes define regional identities along the anterior-posterior axis in many animals. In a number of species, Hox genes are clustered in the genome, and the relative order of genes corresponds with position of expression in the body. Previous Hox gene studies in lophotrochozoans have reported expression for only a subset of the Hox gene complement and/or lack detailed genomic organization inf...

متن کامل

Molecular data indicate the protostome affinity of brachiopods.

Although the phylogenetic position of brachiopods has always been subject to debate, many authors place them as a sister group to deuterostomes on the basis of morphological and developmental characters. However, molecular phylogeny consistently places them among protostomes. More precisely, brachiopods are predicted to branch inside the lophotrochozoan assemblage, together with annelids, mollu...

متن کامل

The Hox gene complement of a pelagic chaetognath, Flaccisagitta enflata.

Chaetognaths are transparent marine animals that are ubiquitous and abundant members of oceanic zooplanktonic communities. Their phylogenetic position within the Metazoa, however, has remained obscure since their discovery. Morphology and embryology have traditionally allied chaetognaths with deuterostomes, but molecular evidence suggests otherwise. Two recent multigene expressed sequence tag (...

متن کامل

HOX genes in the sepiolid squid Euprymna scolopes: implications for the evolution of complex body plans.

Molluscs display a rich diversity of body plans ranging from the wormlike appearance of aplacophorans to the complex body plan of the cephalopods with highly developed sensory organs, a complex central nervous system, and cognitive abilities unrivaled among the invertebrates. The aim of the current study is to define molecular parameters relevant to the developmental evolution of cephalopods by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 10  شماره 

صفحات  -

تاریخ انتشار 2017